Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Psiquiatr. biol. (Internet) ; 31(1): [100439], ene.-mar 2024.
Article Es | IBECS | ID: ibc-231631

El aumento de la esperanza de vida ha llevado a un incremento en la incidencia de enfermedades crónicas como la demencia. Tratar los factores de riesgo de la demencia, como la depresión, podría reducir su incidencia. Sin embargo, el tratamiento con antidepresivos no ha sido eficaz en el manejo de este síntoma, lo que aumenta el riesgo de demencia en el futuro. Es fundamental investigar las causas y el tratamiento de la depresión, y el uso de modelos animales es importante en este sentido. Este estudio busca analizar la relación entre la depresión y el riesgo de desarrollar demencia, así como los modelos preclínicos más relevantes para estudiar la depresión en roedores. (AU)


The increase in life expectancy has led to a rise in the incidence of chronic diseases, such as dementia. Treating the risk factors of dementia, such as depression, could help reduce its occurrence. However, antidepressant treatment has not proven effective in managing this symptom, thereby increasing the risk of dementia in the future. It is essential to investigate the causes and treatment of depression, and in this regard, the use of animal models is of great significance. This study aims to analyze the evidence supporting the relationship between depression and the risk of developing dementia, while also providing an update on the most relevant preclinical models for studying depression in rodents. (AU)


Humans , Animals , Dementia/diagnosis , Dementia/prevention & control , Depression/diagnosis , Depression/prevention & control , Risk Factors , Antidepressive Agents/adverse effects , Cognitive Dysfunction , Models, Animal
3.
Neurotoxicology ; 87: 70-85, 2021 12.
Article En | MEDLINE | ID: mdl-34481871

The number of people with dementia worldwide is estimated at 50 million by 2018 and continues to rise mainly due to increasing aging and population growth. Clinical impact of current interventions remains modest and all efforts aimed at the identification of new therapeutic approaches are therefore critical. Previously, we showed that JM-20, a dihydropyridine-benzodiazepine hybrid molecule, protected memory processes against scopolamine-induced cholinergic dysfunction. In order to gain further insight into the therapeutic potential of JM-20 on cognitive decline and Alzheimer's disease (AD) pathology, here we evaluated its neuroprotective effects after chronic aluminum chloride (AlCl3) administration to rats and assessed possible alterations in several types of episodic memory and associated pathological mechanisms. Oral administration of aluminum to rodents recapitulates several neuropathological alterations and cognitive impairment, being considered a convenient tool for testing the efficacy of new therapies for dementia. We used behavioral tasks to test spatial, emotional- associative and novel object recognition memory, as well as molecular, enzymatic and histological assays to evaluate selected biochemical parameters. Our study revealed that JM-20 prevented memory decline alongside the inhibition of AlCl3 -induced oxidative stress, increased AChE activity, TNF-α and pro-apoptotic proteins (like Bax, caspase-3, and 8) levels. JM-20 also protected against neuronal damage in the hippocampus and prefrontal cortex. Our findings expanded our understanding of the ability of JM-20 to preserve memory in rats under neurotoxic conditions and confirm its potential capacity to counteract cognitive impairment and etiological factors of AD by breaking the progression of key steps associated with neurodegeneration.


Aluminum Chloride/toxicity , Benzodiazepines/pharmacology , Memory Disorders/chemically induced , Memory/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Niacin/analogs & derivatives , Aluminum Chloride/antagonists & inhibitors , Animals , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory Disorders/drug therapy , Mitochondria/drug effects , Morris Water Maze Test/drug effects , Niacin/pharmacology , Open Field Test/drug effects , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Rotarod Performance Test
4.
Eur J Pharmacol ; 899: 174025, 2021 May 15.
Article En | MEDLINE | ID: mdl-33722590

Cerebral ischemia constitutes the most frequent type of cerebrovascular disease. The reduction of blood supply to the brain initiates the ischemic cascade starting from ionic imbalance to subsequent glutamate excitotoxicity, neuroinflammation and oxidative stress, eventually causing neuronal death. Previously, the authors have demonstrated the in vitro cytoprotective and antioxidant effects of a new arylidene malonate derivative, KM-34, against oxidizing agents like hydrogen peroxide, glutamate or Fe3+/ascorbate. Here, we examined for the first time the neuroprotective effect of KM-34 on ischemia/reperfusion models. In vitro, treatment with 10 and 50 µM KM-34 reduced the cellular death (propidium iodide incorporation) induced by oxygen glucose deprivation (OGD) in rat organotypic hippocampal slices cultures. In vivo, stroke was induced in male Wistar rats through middle cerebral artery occlusion (MCAO), followed by 23 h of reperfusion. KM-34 was orally administered 105 min after MCAO onset. We noticed that 1 mg/kg KM-34 reduced infarct volume and neurological score, and increased the latency to fall in the Hanging Wire test compared to vehicle-treated ischemic animals. While ischemic and sham-operated groups showed similar horizontal locomotor activity, vertical counts decreased after MCAO, suggesting that vertical movements are more sensitive to the ischemic injury. Treatment with KM-34 also alleviated the mitochondrial impairment (ROS generation, swelling and membrane potential dissipation) induced by transient MCAO but not significant alterations were found in oxidative stress parameters. Overall, the study provides preclinical evidences confirming the neuroprotective effects of a novel synthetic molecule and paved the way for future investigations regarding its therapeutic potential against brain ischemia/reperfusion injury.


Brain/drug effects , Catechols/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Reperfusion Injury/prevention & control , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Locomotion/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Swelling/drug effects , Motor Activity/drug effects , Oxidative Stress/drug effects , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Tissue Culture Techniques
5.
Neurotoxicology ; 82: 89-98, 2021 01.
Article En | MEDLINE | ID: mdl-33232743

We have previously shown that JM-20, a new chemical entity consisting of 1,5-benzodiazepine fused to a dihydropyridine moiety, protects against rotenone-induced neurotoxicity in an experimental model of Parkinson's disease (PD). The aim of this study was to investigate the effect of a novel hybrid molecule, named JM-20, in in vitro and in vivo models of PD induced by 6-hydroxydopamine (6-OHDA). PC-12 cells were exposed to 6-OHDA and treated with JM-20. Protection against mitochondrial damage induced by 6-OHDA was also investigated using isolated rat brain mitochondria. We found that JM-20 protected PC-12 cells against cytotoxicity induced by 6-OHDA and inhibited hydrogen peroxide generation, mitochondrial swelling and membrane potential dissipation. For in vivo experiments, adult male Wistar rats were lesioned in the substantia nigra pars compacta (SNpc) by 6-OHDA administration. JM-20 was orally administered (10, 20 or 40 mg/kg), intragastric via gavage, 24 h after surgery and daily for seven days. Treatment with JM-20 significantly reduced the percentage of motor asymmetry and increased vertical exploration. It improved the redox state of the SNpc and the striatal tissue of these animals. Also, JM-20 reduced glial fibrillary acidic protein overexpression and increased tyrosine hydroxylase-positive cell number, both in SNpc. Altogether, these results demonstrate that JM-20 is a potential neuroprotective agent against 6-OHDA-induced damage in both in vitro and in vivo models. The mechanism underlying JM-20 neuroprotection against 6-OHDA appears to be associated with the control of oxidative injury and mitochondrial impairment.


Antioxidants/pharmacology , Benzodiazepines/pharmacology , Brain/drug effects , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Niacin/analogs & derivatives , Oxidopamine/toxicity , Parkinsonian Disorders/drug therapy , Animals , Male , Mitochondria/metabolism , Niacin/pharmacology , Open Field Test/drug effects , Oxidative Stress/drug effects , PC12 Cells/drug effects , Parkinsonian Disorders/chemically induced , Rats , Rats, Wistar
6.
Neurol Res ; 41(5): 385-398, 2019 May.
Article En | MEDLINE | ID: mdl-30821663

OBJECTIVE: JM-20, a novel hybrid synthetic molecule, has been reported to have antioxidant, mitoprotective, anti-excitotoxic, anti-apoptotic and anti-inflammatory properties. However, the neuroprotective effect of JM-20 against memory impairment in preclinical AD-like models has not been analyzed. The aim of this study was to evaluate the potential neuroprotection of JM-20 that preserves essential memory process from cholinergic dysfunction and other molecular damages. METHODS: The effects of JM-20 on scopolamine (1 mg/kg)-induced cognitive disorders were studied. Male Wistar rats (220-230 g) were treated with JM-20 and/or scopolamine, and behavioral tasks were performed. The AChE activity, superoxide dismutase activity, catalase activity, MDA and T-SH level on brain tissue were determined by spectrophotometric methods. Mitochondrial functionality parameters were measured after behavioral tests. Histological analyses on hippocampus and prefrontal cortex were processed with hematoxylin and eosin, and neuronal and axonal damage were determined. RESULTS: The behavioral, biochemical and histopathological studies revealed that oral pre-treatment with JM-20 (8 mg/kg) significantly attenuated the scopolamine-induced memory deficits, mitochondrial malfunction, oxidative stress, and prevented AChE hyperactivity probably due to specific inhibition of AChE enzyme. It was also observed marked histological protection on hippocampal and prefrontal-cortex regions. CONCLUSIONS: The multimodal action of this molecule could mediate the memory protection here observed and suggest that it may modulate different pathological aspects of memory deficits associated with AD in humans.


Benzodiazepines/pharmacology , Cholinesterase Inhibitors/pharmacology , Cognitive Dysfunction/drug therapy , Memory/drug effects , Niacin/analogs & derivatives , Nootropic Agents/pharmacology , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Male , Memory/physiology , Memory Disorders/drug therapy , Memory Disorders/metabolism , Memory Disorders/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Niacin/pharmacology , Random Allocation , Rats, Wistar , Scopolamine
7.
Mol Neurobiol ; 56(1): 502-512, 2019 Jan.
Article En | MEDLINE | ID: mdl-29725905

Stroke is frequently associated with severe neurological decline and mortality, and its incidence is expected to increase due to aging population. The only available pharmacological treatment for cerebral ischemia is thrombolysis, with narrow therapeutic windows. Efforts aimed to identify new therapeutics are crucial. In this study, we look into plausible molecular and cellular targets for JM-20, a new hybrid molecule, against ischemic stroke in vivo. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) following 23 h of reperfusion. Animals treated with 8 mg/kg JM-20 (p.o., 1 h after reperfusion) showed minimal neurological impairment and lower GABA and IL-1ß levels in CSF when compared to damaged rats that received vehicle. Immunocontent of pro-survival, phosphorylated Akt protein decreased in the cortex after 24 h as result of the ischemic insult, accompanied by decreased number of NeuN+ cells in the peri-infarct cortex, cornu ammonis 1 (CA1) and dentate gyrus (DG) areas. Widespread reactive astrogliosis in both cortex and hippocampus (CA1, CA3, and DG areas) was observed 24 h post-ischemia. JM-20 prevented the activated Akt reduction, neuronal death, and astrocytes reactivity throughout the brain. Overall, the results reinforce the pharmacological potential of JM-20 as neuroprotective agent and provide important evidences about its molecular and cellular targets in this model of cerebral ischemia.


Astrocytes/pathology , Benzodiazepines/therapeutic use , Brain Infarction/drug therapy , Brain/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Neurons/pathology , Niacin/analogs & derivatives , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Benzodiazepines/pharmacology , Brain Infarction/cerebrospinal fluid , Brain Infarction/pathology , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Cell Death/drug effects , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Glial Fibrillary Acidic Protein/metabolism , Gliosis/metabolism , Gliosis/pathology , Infarction, Middle Cerebral Artery/cerebrospinal fluid , Interleukin-10/cerebrospinal fluid , Interleukin-1beta/cerebrospinal fluid , Male , Neurons/drug effects , Niacin/pharmacology , Niacin/therapeutic use , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Treatment Outcome , gamma-Aminobutyric Acid/cerebrospinal fluid
8.
Neurosci Lett ; 690: 29-35, 2019 01 18.
Article En | MEDLINE | ID: mdl-30304707

Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). The aim of this study was to investigate the effects of a novel hybrid molecule, named JM-20, in different in vitro and in vivo models of PD induced by rotenone. To perform in vitro studies, SHSY-5Y cells were exposed to rotenone and/or treated with JM-20. To perform in vivo studies male Wistar rats were intoxicated with rotenone (2.5 mg/kg) via intraperitoneal injection and/or treated with JM-20 (40 mg/kg) administered via oral (for 25 days, both treatment). Rats were evaluated for global motor activity by measurement of locomotor activity. In addition, the effects on mortality, general behavior and redox parameters were also investigated. JM-20 protected SHSY-5Y cells against rotenone-induced cytotoxicity, evidenced by a significant diminution of cell death. In in vivo studies, JM-20 prevented rotenone-induced vertical exploration and locomotion frequency reductions, moreover prevented body weight loss and mortality induced by rotenone. It also improved the redox state of rotenone-exposured animals by increasing superoxide dismutase and catalase activities, total tissue-SH levels and decreasing malondialdehyde concentrations. Finally, JM-20 inhibited spontaneous mitochondrial swelling and membrane potential dissipation in isolated rats brain mitochondria. These results demonstrate that JM-20 is a potential neuroprotective agent against rotenone-induced damage in both in vitro and in vivo models, resulting in reduced neuronal oxidative injury and protection of mitochondria from impairment.


Benzodiazepines/pharmacology , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Niacin/analogs & derivatives , Rotenone/toxicity , Animals , Body Weight/drug effects , Brain/metabolism , Catalase/metabolism , Cell Death/drug effects , Cells, Cultured , Humans , Male , Mitochondria/metabolism , Motor Activity/drug effects , Niacin/pharmacology , Oxidative Stress/drug effects , Rats , Superoxide Dismutase/metabolism
9.
Pharmacol Rep ; 70(4): 699-704, 2018 Aug.
Article En | MEDLINE | ID: mdl-29933207

Ischemic stroke is a major cause of death and disability worldwide. Thrombolysis by tissue plasminogen activator is the only pharmacological treatment approved for clinical practice, but has a narrow therapeutic window and poor efficacy when the cell death cascade is activated. Numerous drugs that are thought to protect neurons against injury have previously failed in human trials despite showing efficacy in experimental models of stroke. Herein, we reviewed the main pre-clinical results of the neuroprotective effects of JM-20, a new hybrid molecule, against brain ischemia. JM-20 appears to protect the brain from ischemic damage by interfering with several elements of the ischemic cascade: antiexcitotoxic, anticalcic, antioxidant, antiapoptotic, and anti-inflammatory. Its ability to protect not only neurons but also glial cells together with its ability to target and preserve mitochondrial function makes JM-20 a promising molecule that may be able to shield the whole neurovascular unit. The multimodal and multi-cell action of JM-20 may explain the high degree of protection observed in a rat model of brain ischemia, as assayed through histological (hematoxylin-eosin, and luxol fast blue staining), neurochemical (glutamate and aspartate levels in cerebrospinal fluid), mitochondrial functionality and behavioural (neurological scale) analysis at doses of 4 and 8mg/kg. Furthermore, the wide therapeutic window of JM-20 of 8h also suggests that this molecule could be of potential interest in situations where brain perfusion is compromised.


Benzodiazepines/pharmacology , Brain Ischemia/prevention & control , Niacin/analogs & derivatives , Animals , Drug Evaluation, Preclinical , Neuroprotective Agents/pharmacology , Niacin/pharmacology
10.
Drug Res (Stuttg) ; 68(5): 263-269, 2018 May.
Article En | MEDLINE | ID: mdl-29100263

Free radicals are important mediators in a number of neurodegenerative diseases and molecules capable of scavenging reactive oxygen species (ROS) may be a feasible strategy for protecting neuronal cells. In this sense, polyphenols have been studied for their antioxidant effects, KM-34 (5-(3, 4-dydroxyl-benzylidene)-2, 2-dimethyl-1, 3-dioxane-4, 6-Dione) is a novel synthetic catechol with potential neuroprotective and antioxidant properties. We have assessed the antioxidant (as scavenging and iron-chelating compound) and neuroprotectant in vitro (in PC12 cell injury induced by H2O2, glutamate or FeSO4/AA) of KM-34. KM-34 was found to be a potent antioxidant, as shown by (i) inhibition of iron induced-brain lipid peroxidation, (ii) inhibition of 2-deoxyribose degradation, (iii) inhibition of superoxide radicals generation (IC50=11.04 µM) and (iv) inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical reduction (IC50=16.26 µM). The overall anti-oxidant action of KM-34 appears to be a combination of a direct reaction with free radicals and chelating the metal ions responsible for the production of ROS. Our work suggests that the antioxidant properties of KM-34 may provide future therapeutic approaches for neurodegenerative disorders.


Antioxidants/pharmacology , Catechols/chemical synthesis , Catechols/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Cell Survival/drug effects , Cells, Cultured , Free Radical Scavengers/pharmacology , Lipid Peroxidation/drug effects , Male , Rats
11.
Neurol Res ; 39(7): 649-659, 2017 Jul.
Article En | MEDLINE | ID: mdl-28398193

OBJECTIVE: Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS: Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS: SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION: In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.


Memory Disorders/metabolism , Mitochondria/metabolism , Acetylcholinesterase/metabolism , Animals , Brain/metabolism , Calcium/metabolism , Cations, Divalent/metabolism , Disease Models, Animal , Hydrogen Peroxide/metabolism , Male , Maze Learning/physiology , Membrane Potential, Mitochondrial/physiology , Mitochondrial Swelling/physiology , Oxidative Stress/physiology , Random Allocation , Rats, Wistar , Recognition, Psychology/physiology , Scopolamine
12.
Neurochem Int ; 90: 215-23, 2015 Nov.
Article En | MEDLINE | ID: mdl-26361722

Cerebral ischemia is the third most common cause of death and a major cause of disability worldwide. Beyond a shortage of essential metabolites, ischemia triggers many interconnected pathophysiological events, including excitotoxicity, oxidative stress, inflammation and apoptosis. Here, we investigated the neuroprotective mechanisms of JM-20, a novel synthetic molecule, focusing on the phosphoinositide-3-kinase (PI3K)/Akt survival pathway and glial cell response as potential targets of JM-20. For this purpose, we used organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD) to achieve ischemic/reperfusion damage in vitro. Treatment with JM-20 at 0.1 and 10 µM reduced PI incorporation (indicative of cell death) after OGD. OGD decreased the phosphorylation of Akt (pro-survival) and GSK 3ß (pro-apoptotic), resulting in respective inhibition and activation of these proteins. Treatment with JM20 prevented the reduced phosphorylation of these proteins after OGD, representing a shift from pro-apoptotic to pro-survival signaling. The OGD-induced activation of caspase-3 was also attenuated by JM-20 treatment at 10 µM. Moreover, in cultures treated with JM-20 and exposed to OGD conditioning, we observed a decrease in activated microglia, as well as a decrease in interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α release into the culture medium, while the level of the anti-inflammatory IL-10 increased. GFAP immunostaining and IB4 labeling showed that JM-20 treatment significantly augmented GFAP immunoreactivity after OGD, when compared with cultures exposed to OGD only, suggesting the activation of astroglial cells. Our results confirm that JM-20 has a strong neuroprotective effect against ischemic injury and suggest that the mechanisms involved in this effect may include the modulation of reactive astrogliosis, as well as neuroinflammation and the anti-apoptotic cell signaling pathway.


Benzodiazepines/pharmacology , Cell Death/drug effects , Glycogen Synthase Kinase 3/metabolism , Hippocampus/drug effects , Niacin/analogs & derivatives , Oxygen/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Animals, Newborn , Glucose/metabolism , Glycogen Synthase Kinase 3 beta , Hippocampus/metabolism , Male , Neurons/drug effects , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Niacin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Rats, Wistar
13.
Neurochem Int ; 81: 41-7, 2015 Feb.
Article En | MEDLINE | ID: mdl-25617730

JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel benzodiazepine dihydropyridine hybrid molecule, which has been shown to be a neuroprotective agent in brain disorders involving glutamate receptors. However, the effect of JM-20 on the functionality of the glutamatergic system has not been investigated. In this study, by using different in vitro preparations, we investigated the effects of JM-20 on (i) rat brain synaptic vesicles (L-[(3)H]-glutamate uptake, proton gradient built-up and bafilomycin-sensitive H(+)-ATPase activity), (ii) rat brain synaptosomes (glutamate release) and (iii) primary cultures of rat cortical neurons, astrocytes and astrocyte-neuron co-cultures (L-[(3)H]-glutamate uptake and glutamate release). We observed here that JM-20 impairs H(+)-ATPase activity and consequently reduces vesicular glutamate uptake. This molecule also inhibits glutamate release from brain synaptosomes and markedly increases glutamate uptake in astrocytes alone, and co-cultured neurons and astrocytes. The impairment of vesicular glutamate uptake by inhibition of the H(+)-ATPase caused by JM-20 could decrease the amount of the transmitter stored in synaptic vesicles, increase the cytosolic levels of glutamate, and will thus down-regulate neurotransmitter release. Together, these results contribute to explain the anti-excitotoxic effect of JM-20 and its strong neuroprotective effect observed in different in vitro and in vivo models of brain ischemia.


Benzodiazepines/pharmacology , Brain/drug effects , Glutamic Acid/metabolism , Neurons/drug effects , Niacin/analogs & derivatives , Synaptic Vesicles/drug effects , Synaptosomes/drug effects , Animals , Brain/cytology , Brain/metabolism , Cells, Cultured , Male , Neurons/metabolism , Niacin/pharmacology , Rats , Rats, Wistar , Synaptic Vesicles/metabolism , Synaptosomes/metabolism
14.
Brain Res Bull ; 109: 68-76, 2014 Oct.
Article En | MEDLINE | ID: mdl-25305343

Because mitochondrial oxidative stress and impairment are important mediators of neuronal damage in neurodegenerative diseases and in brain ischemia/reperfusion, in the present study, we evaluated the antioxidant and mitoprotective effect of a new promising neuroprotective molecule, JM-20, in mitochondria and synaptosomes isolated from rat brains. JM-20 inhibited succinate-mediated H2O2 generation in both mitochondria and synaptosomes incubated in depolarized (high K(+)) medium at extremely low micromolar concentration and with identical IC50 values of 0.91 µM. JM-20 also repressed glucose-induced H2O2 generation stimulated by rotenone or by antimycin A in synaptosomes incubated in high sodium-polarized medium at extremely low IC50 values of 0.395 µM and 2.452 µM, respectively. JM-20 was unable to react directly with H2O2 or with superoxide anion radicals but displayed a cathodic reduction peak at -0.71V, which is close to that of oxygen (-0.8V), indicating high electron affinity. JM-20 also inhibited uncoupled respiration in mitochondria or synaptosomes and was a more effective inhibitor in the presence of the respiratory substrates glutamate/malate than in the presence of succinate. JM-20 also prevented Ca(2+)-induced mitochondrial permeability transition pore opening, membrane potential dissipation and cytochrome c release, which are key pathogenic events during stroke. This molecule also prevented Ca(2+) influx into synaptosomes and mitochondria; the former effect was a consequence of the latter because JM-20 inhibition followed the patterns of carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), which is a classic mitochondrial uncoupler. Because the mitochondrion is considered an important source and target of neuronal cell death signaling after an ischemic insult, the antioxidant and protective effects of JM-20 against the deleterious effects of Ca(2+) observed at the mitochondrial level in this study may endow this molecule with the ability to succeed in mitochondrion-targeted strategies to combat ischemic brain damage.


Antioxidants/pharmacology , Benzodiazepines/pharmacology , Calcium/toxicity , Mitochondria/drug effects , Niacin/analogs & derivatives , Prosencephalon/ultrastructure , Synaptosomes/drug effects , Adenosine Triphosphate/metabolism , Animals , Catalase/pharmacology , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Niacin/pharmacology , Oligomycins/pharmacology , Oxygen/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxides/metabolism
15.
Neuropharmacology ; 85: 517-27, 2014 Oct.
Article En | MEDLINE | ID: mdl-24953828

We previously showed that JM-20, a novel 1,5-benzodiazepine fused to a dihydropyridine moiety, possessed an anxiolytic profile similar to diazepam and strong neuroprotective activity in different cell models relevant to cerebral ischemia. Here, we investigated whether JM-20 protects against ischemic neuronal damage in vitro and in vivo. The effects of JM-20 were evaluated on hippocampal slices subjected to oxygen and glucose deprivation (OGD). For in vivo studies, Wistar rats were subjected 90 min of middle cerebral artery occlusion (MCAo) and oral administration of JM-20 at 2, 4 and 8 mg/kg 1 h following reperfusion. Twenty-four hours after cerebral blood flow restoration, neurological deficits were scored, and the infarct volume, histopathological changes in cortex, number of hippocampal and striatal neurons, and glutamate/aspartate concentrations in the cerebrospinal fluid were measured. Susceptibility to brain mitochondrial swelling, membrane potential dissipation, H2O2 generation, cytochrome c release, Ca2+ accumulation, and morphological changes in the organelles were assessed 24 h post-ischemia. In vitro, JM-20 (1 and 10 µM) administered during reperfusion significantly reduced cell death in hippocampal slices subjected to OGD. In vivo, JM-20 treatment (4 and 8 mg/kg) significantly decreased neurological deficit scores, edema formation, total infarct volumes and histological alterations in different brain regions. JM-20 treatment also protected brain mitochondria from ischemic damage, most likely by preventing Ca2+ accumulation in organelles. Moreover, an 8-mg/kg JM-20 dose reduced glutamate and aspartate concentrations in cerebrospinal fluid and the deleterious effects of MCAo even when delivered 8 h after blood flow restoration. These results suggest that in rats, JM-20 is a robust neuroprotective agent against ischemia/reperfusion injury with a wide therapeutic window. Our findings support the further examination of potential clinical JM-20 use to treat acute ischemic stroke.


Benzodiazepines/pharmacology , Brain Ischemia/drug therapy , Excitatory Amino Acids/metabolism , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Niacin/analogs & derivatives , Animals , Brain/drug effects , Brain/pathology , Brain/physiopathology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cell Death/drug effects , Cell Death/physiology , Disease Models, Animal , Glucose/deficiency , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/physiopathology , Male , Mitochondria/pathology , Mitochondria/physiology , Niacin/pharmacology , Random Allocation , Rats, Wistar , Tissue Culture Techniques
16.
Eur J Pharmacol ; 726: 57-65, 2014 Mar 05.
Article En | MEDLINE | ID: mdl-24462350

The ischemic stroke cascade is composed of several pathophysiological events, providing multiple targets for pharmacological intervention. JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel hybrid molecule, in which a benzodiazepine portion is covalently linked to a dihydropyridine ring, forming a new chemical entity with potential multisite neuroprotective activity. In the present study, JM-20 prevented PC-12 cell death induced either by glutamate, hydrogen peroxide or KCN-mediated chemical hypoxia. This molecule also protected cerebellar granule neurons from glutamate or glutamate plus pentylenetetrazole-induced damage at very low micromolar concentrations. In rat liver mitochondria, JM-20, at low micromolar concentrations, prevented the Ca2+-induced mitochondrial permeability transition, as assessed by mitochondrial swelling, membrane potential dissipation and organelle release of the pro-apoptotic protein cytochrome c. JM-20 also inhibited the mitochondrial hydrolytic activity of F1F0-ATP synthase and Ca2+ influx. Therefore, JM-20 may be a multi-target neuroprotective agent, promoting reductions in neuronal excitotoxic injury and the protection of the mitochondria from Ca2+-induced impairment as well as the preservation of cellular energy balance.


Benzodiazepines/chemistry , Benzodiazepines/pharmacology , Brain Ischemia/pathology , Dihydropyridines/chemistry , Mitochondria/drug effects , Neurons/drug effects , Neurons/pathology , Niacin/analogs & derivatives , Animals , Brain Ischemia/complications , Calcium/metabolism , Cell Death/drug effects , Cerebellum/cytology , Cytochromes c/metabolism , Glutamic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Hydrolysis/drug effects , Liver/drug effects , Liver/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Mitochondrial Swelling/drug effects , Neurons/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Niacin/chemistry , Niacin/pharmacology , Oxidative Stress/drug effects , PC12 Cells , Pentylenetetrazole/pharmacology , Phosphates/metabolism , Potassium Cyanide/pharmacology , Rats , Stroke/complications
...